新萄京娱乐棋牌手机版肝癌基因在小器官中的作用

by admin on 2020年4月11日

新萄京娱乐棋牌手机版 1

Cell:让CRISPR在癌症领域大放异彩
新萄京娱乐棋牌手机版 2

最近发表在开放获取期刊Genome
Medicine上的一项研究,报道了一种建立肝癌小鼠模型的新方法,即利用CRISPR/Cas9系统快速将癌症相关基因敲入小鼠的DNA中。

来自Hubrecht研究所和Radboud大学的研究人员开发了一种人体模型,他们使用类器官或小器官来研究肝癌中突变的特定基因的功能。使用这种方法,他们发现BAP1(一种通常在肝癌中发生突变的基因)的突变会改变细胞的行为,这可能使它们更容易被侵入。他们的研究结果发表在5月23日的科学期刊Cell
Stem Cell上。

一次CRISPR-Cas9基因编辑技术被用于整体生物模型中系统地靶向基因组中的每一个基因。来自Broad研究所和麻省理工学院DavidH.Koch综合癌症研究所的一个科学家小组,率先利用这一技术在一个癌症动物模型中系统地“敲除”了整个基因组的所有基因,揭示出了与肿瘤进化和转移相关的一些基因,这为在其他细胞类型和疾病中从事类似的研究铺平了道路。这项研究工作在线发表在3月5日的《细胞》杂志上。

研究的通讯作者、麻省大学医学院RNA疗法研究所的王文说:“为了更好地理解肿瘤生物学、开展临床前研究以及为病人找到潜在的治疗策略,我们需要有效的肿瘤模型。现有用来敲入致癌基因以建立癌症模型的方法或效率很低,或难以控制敲入位置和敲入的拷贝数。CRISPR/Cas9使得在基因组特定位置——我们将这种位置称为目标基因座——插入大片段DNA成为可能,并且可应用于实验室的人类细胞以及小鼠中。我们研发出了一个新的系统——CRISPR-SONIC,可以在肝癌小鼠模型中灵活进行基因敲入,且准确率很高。”

有机体和癌症研究

共同资深作者、哈佛-麻省理工Broad研究所核心成员、麻省理工McGovern脑研究所研究员、麻省理工学院大脑、认知科学与生物工程学系助理教授张锋说:“全基因组向导RNA库是一个强大的筛查系统,我们带着激动的心情开始将它应用于动物模型中来研究基因功能。这项研究是朝着利用Cas9在体内鉴别癌症和其他复杂疾病中的重要基因迈出的第一步。”

新萄京娱乐棋牌手机版 3

有机体是可以在实验室中生长的微型器官,来自各种器官的非常小的组织。它们已经在癌症研究中使用了几年,主要是通过比较源自健康器官的类器官与源自肿瘤的器官。然而,该方法不适合于研究已知在癌症中突变的特定基因的功能和作用。为了更多地了解肿瘤形成,需要一种清洁模型,其中可以比较具有和不具有这种突变的类器官。

共同资深作者、麻省理工学院教授、Broad研究所董事会成员及Koch研究所成员PhillipSharp说:“肿瘤进化是一系列受到基因网络调控的、极为复杂的过程。在体内应用基因编辑是功能基因组研究的一个强大平台,它为探究肿瘤进化中的每一步以及鉴别出调控这些过程的基因提供了一种新方法。”

为了解决癌症建模的现存问题、满足快速有效建立动物模型的需求,牟海伟、Deniz
Ozata和Jordan L.
Smith研发了这一新系统,利用CRISPR/Cas9基因编辑系统将致癌基因插入活小鼠的基因组。CRISPR/Cas9系统由一段向导RNA和Cas9酶组成。向导RNA是一种核苷酸短序列,它会附着到基因组中一个特定的目标DNA序列上。由于向导RNA同时也与Cas9酶相连接,它可以将Cas9导向目标DNA序列。然后Cas9会对DNA进行剪切,移除单个核苷酸/整个基因,或在DNA修复过程中插入核苷酸/整个基因。

新模式

借助于CRISPR-Cas9基因编辑技术,科学家们能够调查一些基因和遗传突变在人类生物学及疾病中的作用。这一系统可以在DNA水平上消除基因的功能,相比之下像RNA干扰一类的遗传干扰技术则是在RNA水平上发挥作用。以往Broad研究所的科学家们曾利用CRISPR-Cas9技术在一些细胞模型中完成了全基因筛查,但这种方法并没有捕捉到在整体生物体内起作用的复杂过程。例如,为了实现癌症转移,恶性细胞必须离开原发肿瘤,进入血管迁移到机体的远端部位。张锋与Sharp协作通过在一个整体动物模型中应用CRISPR-Cas9技术,搜索了参与转移的基因。

作者在本研究中使用了具有2个向导RNA的CRISPR/Cas9,进行了一个三步骤的操作。首先,其中一个向导RNA和Cas9酶一起对目标DNA位置进行切割。第二步,另一个向导RNA和Cas9会对一个DNA环进行切割,第三步则是将已经被切割成线状的质粒环插入目标位置。

研究人员开发了一种新模型,其中使用名为CRISPR /
Cas9的分子剪刀对来自健康人肝脏的类器官进行遗传改变,以研究肿瘤形成中遗传改变的功能。研究这种突变在肿瘤形成中的作用在肝癌中尤为重要,研究人员Benedetta
Artegiani说,因为它是一种非常异质的癌症:不同基因中的各种突变都存在于不同的基因中。耐心。到目前为止,许多这些基因在肿瘤发展中的功能仍然未知。因此,新开发的模型是解决肝癌形成中特定基因功能的有价值工具。

在新研究中,研究人员利用Broad研究所的“小鼠全基因组CRISPR敲除文库A”(靶向小鼠基因组中所有基因的CRISPR向导RNA汇合文库),以及Cas9DNA切割酶处理了来自非小细胞肺癌小鼠模型的细胞。这一系统将突变导入到了一些特定基因中,破坏了它们的序列并阻止了这些基因生成蛋白。这一方法确保了在每个细胞中只有一个基因被敲除,在培养的异质细胞群中则以小鼠基因组中的所有基因作为靶标。研究人员随后将这些细胞移植到小鼠体内,发现用这一基因敲除文库处理的一些细胞形成了高转移性肿瘤。

为了验证这一方法,作者利用这种方法将一个绿色荧光蛋白基因插入了实验室培养的小鼠细胞中。这个基因在成功进入细胞DNA后,会产生一种在激光下可见的绿色荧光蛋白,从而表明基因成功插入并被表达。在实验室细胞中成功检验后,作者们在小鼠里测试了这种方法。

BAP1

利用新一代测序,科学家们鉴别出了在原发肿瘤及转移灶中敲除的基因,指出了一些基因有可能是通常抑制肿瘤生长的肿瘤抑制基因,当敲除它们时会促进肿瘤生长。

Deniz
Ozata说:“我们观察到在使用了CRISPR-SONIC后,我们的样本中约有10%的肝脏细胞成功带上了GFP。这相对于之前那些方法大约0.5%的敲入效率来说,是一个巨大的提升。”

利用该模型揭示了BAP1的功能,BAP1是一种在大约15-20%的肝癌患者中发生突变的基因,其中迄今为止肝脏肿瘤发展中的特定作用尚不清楚。研究人员发现,与健康的类器官相比,BAP1突变的类器官具有非常不同的特征:它们变成了固体块,它们生长得更快,更容易运动并与其他类器官融合。这些观察结果类似于更具侵袭性的恶性肿瘤的特征。此外,通过向类器官添加正常BAP1,可以逆转器官形态和行为的这些变化。此外,研究人员还研究了在肝癌中经常发生突变的四种基因突变的类器官,以及添加了BAP1突变的类器官。

研究结果突出显示了一些在人类肿瘤中众所周知的肿瘤抑制基因,包括Pten、Cdkn2a和Nf2,也涵盖了一些从前未与癌症关联的基因。出乎意料地是,这一筛查系统还揭示了几个microRNAs。

随后作者们对CRISPR-SONIC系统(包括向导RNA、Cas9酶以及一个致癌基因质粒)进行了测试,检验它是否可以用来为肝癌中发病率第二的肝内胆管癌进行小鼠建模。

选择合适的型号

仍然还需要开展更多的实验工作来全面探究筛查中发现的一些基因和microRNAs。一些转移肿瘤在临床很少进行活组织检查导致研究样本稀缺,而未来将转移灶纳入到癌症测序研究将更加深入地了解这一研究中的一些基因突变。

牟海伟说:“导致这种癌症的最常见基因突变发生在抑癌基因TP53(所有病例中约占26-44%)和致癌基因KRAS(所有病例中约占16-18%)中。过往研究显示如果这两个突变一起发生,可以在小鼠模型中引发肝内胆管癌。我们用CRISPR-SONIC敲入了KRAS,同时加入另一个向导RNA敲除了抑癌基因TP53。这在癌症建模中非常重要,因为在p53存在的情况下KRAS无法导致肿瘤的形成。”

通过结合不同的方法 –
显微镜,延时成像和多组学(基于RNA,DNA和蛋白质)技术,研究人员深入研究了BAP1突变可以影响肿瘤发展的机制。他们发现突变BAP1会改变哪些基因在类器官中有活性,并且这些基因活性的变化可以逆转。这些变化可能取决于BAP1突变的细胞类型,Artegiani说,这可以解释为什么先前描述的BAP1功能在不同类型的细胞之间存在差异。这强调了在相关模型中研究基因功能的重要性,来自器官和感兴趣的有机体。

研究人员可利用这一Cell论文中相同的体内筛查方法来检测基因过表达的效应,筛查循环肿瘤细胞或其他细胞系,探讨其他的癌症表型,例如癌症干细胞、宿主-环境互作和血管发生。

将CRISPR-SONIC注射进小鼠一个月后,作者观察到小鼠肝脏中形成了肿瘤。对照组小鼠在注射了向导RNA、Cas9和一段发光DNA片段之后,并未罹患肿瘤。

肿瘤建模

共同第一作者、Sharp实验室博士后研究人员SidiChen说:“我们的研究工作提供了一种原理证明体内敲除筛查方法,它可用于鉴别调控肿瘤进化不同路线及步骤的基因。”

Jordan L.
Smith说:“我们用RAS致癌基因检测了我们的方法,但我们认为任何致癌基因片段都可以用这种方法定制癌症模型。我们展示了如何利用CRISPR-SONIC建立肝癌模型,但这种方法亦有应用到其他组织和器官的潜力。”

研究人员表明,BAP1的突变对于从良性肝肿瘤转变为恶性肝肿瘤非常重要。此外,他们表明他们的模型可以用于通过突变单个基因来模拟肝脏肿瘤。由于该模型使用CRISPR
/
Cas9操纵健康的人类器官相对简单,因此它可用于研究肝癌中许多具有未知功能的基因的功能,无论是单独的还是一起的,以研究不同突变的组合效应。这将为肝肿瘤的发展提供更多的见解。

这项研究还采用一种高效多层次的筛查策略:利用一个较小的、更为集中的向导RNAs池来验证顶端基因突变。“在完成无偏倚的全基因组筛查后,我们设计出了一个子库来快速地检测更多的靶标,而非在个体小鼠中靶向单个基因。这一子库让我们看到了在相同肿瘤中这些不同的遗传突变是如何竞争的。”

作者还展示了这种方法亦可用于建立生物发光癌症模型,这种模型可以让研究者们实时监测癌细胞的生长和癌症发展。

Genome Medicine

Genome Medicine

扫描二维码

访问期刊主页

Genome Medicinepublishes research and reviews that describe important
advances in the application of genetics, genomics and multi-omics to
understand, diagnose and treat disease. Areas covered include, but are
not limited to: precision medicine, novel methods and software, cancer
genomics, disease genomics and epigenomics, immunogenomics, infectious
disease, microbiome and systems medicine.

Citation Impact

8.898 – 2-year IF

8.265 – 5-year IF

1.426 – SNIP

4.537 – SJR

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图